
A PATCH-BASED APPROACH FOR ARTISTIC STYLE TRANSFER

VIA CONSTRAINED MULTI-SCALE IMAGE MATCHING

Benjamin Samuth⋆ David Tschumperlé⋆ Julien Rabin⋆

⋆ Normandie Univ., UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

{Benjamin.Samuth, David.Tschumperle, Julien.Rabin}@unicaen.fr

ABSTRACT

Since a few years and the advent of convolutional neural net-

works, algorithms for artistic style transfer between images

have developed considerably. However, these methods re-

quire a relatively long training phase in order to succeed. This

is why non-learning image processing approaches recently

strove to propose patch-based algorithms able to aestheti-

cally compete with neural methods. This paper goes one step

further in this direction by introducing a new patch-based

method for style transfer, using a constrained multi-scale

version of the fast approximate nearest-neighbor algorithm

PatchMatch, enforcing uniform sampling of style feature-

patch. Our method also aims to mix the patch-based and neu-

ral paradigms by enabling the embedding of image patches in

the feature space of the VGG-16 network.

Index Terms— Style Transfer, Patch-Based Method, Multi-

Scale, Constrained Optimization, Perceptual Features.

1. INTRODUCTION

Style transfer, or image stylization, is one of the image manip-

ulation processes that is able to drastically increase the aes-

thetic value of an image by borrowing the stylistic features of

a style image and applying it over a content image.

A first approach to this process was to consider the problem

as a proxy task of patch-based unsupervised texture synthesis

[1, 2] and transfer [3, 4]. The idea is to locally preserve the

coherence of the style just like a texture while matching the

spatial structure of the content image. In that regard, multiple

improvements of that principle were introduced. [5] uses an

adaptative partition of the content image in order to mix larger

patches of the style image in the less meaningful content-wise

regions such as the sky or plain backgrounds. On the other

hand, [6] proposes to synthesize a stylized image by using [7]

texture optimization method, combined with a segmentation

mask in order to preserve the content. This one can build new

patterns from the patches of the style image even in plain re-

gions. [8] introduces a multi-layer algorithm for semi-discrete

optimal transport, and applies it in the patch space in the con-

text of both texture synthesis and style transfer. This method

C
o

n
te

n
t

Im
a
g
e
I

S
ty

le
Im

a
g
e
R

Φ
:

C
o

lo
r

&
G

ra
d

ie
n

t

Φ
:

N
eu

ra
l

fe
a

tu
re

s

Fig. 1: Proposed patch-based style transfer for different features

Φ. Constrained matching ensures that the content image inherits the

aesthetic of the style image. More results shown in [9].

then matches the patch distribution of the style image, while

the content features are blended based on a edge detection.

In a broader sense, our method takes also inspiration of patch-

based nearest neighbors algorithms such as [10, 11] for in-

painting, [12, 13, 14] for texture generation, or [15, 16] for

single image and video generation. We preserve the idea of

using a multi-resolution nearest neighbor patch search, or in

our case a fast approximation like [17] in order to match the

style patches to the content patches, in a way that will pro-

motes larger regions of style or texture while maintaining the

geometrical coherency of the content along each resolution.

[14, 18] also tackle the problem of optimal patch assignment

that we introduce in our method in order to maintain the patch

diversity distribution of the style image.

[19] introduced a new class of style transfer algorithms us-

ing deep neural networks like VGG [20], as they proved to

encode the content and the style of images. Using a pixel-

wise optimization process over these features, their method

is able to synthesize convincing stylized images. This in-

spired many papers to improve over the issues of this tech-

nique [21, 22, 23]. Mainly, the training of such neural models

×

+ PMk

Jk J̃k

Wk+1↑Mk
Ik

Rk

Rk−1

Wk

Wk↑ Jk−1

Fig. 2: Scheme of the algorithm at an intermediate scale k. The style transfer follows that sequence: the content detail injection, the nearest

neighbor patch search, the upscaling of the nearest neighbor field and the synthesis by warping. There is no injection at the first scale k = N ,

and we directly use the original image at low resolution. Similarly, there is no upscaling process for k = 0.

is time consuming and requires a large image dataset.

We introduce in this paper a fast style transfer algorithm

(Sec. 2.1) using a new constrained nearest neighbor search

(Sec. 2.2). Our method is able to use neural features for its

purpose as well (Sec. 3) as shown on Figure 1, which makes

it a step towards hybrid geometrically explainable models.

2. METHOD

Let I : ΩI → ❘
3 the content image (input), R the style image

(reference). We refer to Φ as the feature-patch extractor, such

that Φ(I) : ΩI → ❘
c×σ2

where c is the features dimensions

and σ × σ indicates the patch dimensions.

Let F the set of field functions W : ΩI → ΩR, which map

a patch of I to a patch of R. At the core of the proposed

framework is the question of finding such an optimal map-

ping W between Φ(I) and Φ(R). The content image is then

warped into the stylized image J by averaging overlapping

color patches from Φ(R)◦W . This work focuses on the patch

nearest neighbor field (NNF) W ∗ defined as follows:

W ∗ ∈ argmin
W∈F

∑

p∈ΩI

||Φ(I)(p)− Φ(R) ◦W (p)||2 (1)

NNFs have been successfully used for image processing (such

as inpainting and texture synthesis) but suffer from several

limitations that we address for style transfer. First, we resort

to a multi-scale scheme in Section 2.1 to blend features from

I and R at multiple-scale. In addition, in order to guarantee

the diversity of used features, our method introduces an oc-

currence penalization inside the PatchMatch algorithm [17]

in Section 2.2. For the sake of simplicity, we will omit the

patch-feature operator Φ in the rest of the section. Its role is

studied in further details in the experimental section.

2.1. Algorithm overview

In order to promote the creation of spatially continuous patch

regions, we build a multi-scale representation {Ik} of I at

N+1 different resolutions (k ∈ {0, ...N}), with a scale factor

of r. In a similar fashion as [11, 15, 16], by using a coarse-

to-fine algorithm, a patch is able to capture the general layout

of the content on the coarsest scales, as well as the details of

the style image on the finest scales. The core of the patch

style transfer at a scale k is described in Fig. 2. This scheme

is repeated from N to 0 and will result in the synthesis of a

stylized image. It can also be represented as a single module,

in order to match with the paradigm of neural networks.

At the output of PatchMatch, the current NNF is increased

in scale using a special method. Indeed, to help the regions

grow from a scale to another, we upscale the previous NNF

(noted W ∗

k−1↑
r) rather than the warped image directly. The

upscaling algorithm is specially conceived for NNF (2), be-

cause the usual interpolations are not pertinent here. We did

not choose to upscale the warped output and then compare it

with the style image of the next scale since it would result in a

comparison of different modalities of details (ie. the upscale

blurs the image) which affect the search.

W↑r (p) = rW
(⌊p

r

⌋)

+ p− r
⌊p

r

⌋

(2)

Consider that the operators are applied element-wise for

higher dimensions of coordinates p. In practice, W is a 2D

array of image coordinates in ΩR. The same result can be

obtained iteratively by expanding to neighbors the scaled val-

ues and adding the corresponding offset, filling the ”holes”

left by the upscale. The upscaled NNF will also be given as

initialization to the next scale PatchMatch, so the coherence

of the patches regions of the field can persist through the

different scales. The first initialization is a random field.

w/o penalization w/ penalization

C
o

n
te

n
t
I

R
◦
W

C
o

lo
rm

a
p
C

C
◦
W

S
ty

le
R

O
cc

u
rr

en
ce

s

Fig. 3: Comparison of final NNF with/without occurrence penaliza-

tion (Sec. 2.2). The penalization increases diversity of used patches.

(1st and 2nd row) The color of a pixel indicates the patch warped

from an image (style or colormap) on that coordinate. (3rd row)

White pixels indicate a style patch being used at least once.

Let k ∈ {N, . . . , 0} from N the coarsest scale to 0 the finest

scale. The best NNF at the scale k is expressed as:

W ∗

k ∈ argmin
W∈F

∑

p∈Ω

||J̃k(p)−Rk ◦W (p)||2 (3)

J̃k = (1−max(Mk, ρk))⊙ Jk +max(Mk, ρk)⊙ Ik

where J̃k is the linear blending of Jk (the output of the patch

warping Rk ◦Wk+1↑
r) and Ik the content image at scale k.

This linear combination is weighted (⊙ indicates pixel-wise

multiplication) by a mask Mk computed from the gradients

of Ik as done in [8]. This mask is clamped with the parameter

ρk ∈ [0, 1] which controls the amount of injected geometric

details from Ik. ρk typically decreases at smaller scales to

preserve only large structures from the content image I .

2.2. Occurrence penalization

To accelerate the computation of the multi-scale NNFs, we

use the fast approximate nearest-neighbor algorithm Patch-

Match [17]. More precisely, our implementation of Patch-

Match is using their proposed GPU scheme.

As we transfer large continuous regions of patches due to our

coarse-to-fine architecture, one known issue is that these re-

gions tends to repeat themselves, making noticeable copy ar-

tifacts [5, 13, 14]. This is why we introduce inside the Patch-

Match algorithm an occurrence penalization that will favor

patch diversity (Fig. 3), as well as making the style transfer

more aesthetically pleasing and believable.

In [8], optimal patch assignment is enforced using semi-

discrete optimal transport. The solution of this problem

simply consists in penalizing each squared norm in (1) with

a scalar variable λW (y). This dual variable is optimized by

stochastic gradient ascend in [8].

Given W the current estimation of the NNF by PatchMatch

and ν ∈ ◆
ΩR the occurrence constraints applied to the

patches, in our setting, that principle transposes in the follow-

ing update rule at each iteration of PatchMatch:

λW (y)← λW (y) + δ∂yλW (y) (4)

∂yλW (y) =
|{p | y = W (p)}|

|ΩI |
−

ν(y)

|ΩR|

where δ is the gradient step. Theorically, we should have im-

posed ν(y) = 1 to promote the uniform sampling of reference

patches, but in practice, the boundary condition requires a dif-

ferent constraint on some patches.

Finally, the new optimization problem is now expressed as the

following equation, using (3) and the optimal λW from (4):

W ∗

k ∈ argmin
W∈F

∑

p∈Ω

Dk(p)

V ar(Dk)
− λW ◦W (p) (5)

with Dk(p) = ||J̃k(p)−Rk ◦W (p)||2

Dk(p) is divided by the variance to normalize the expression.

In such a way, if λW (y) > 0, the patch y is favorised. Other-

wise, when λW (y) < 0, it is penalized.

As shown in Fig. 3, the proposed penalization method effec-

tively avoid artefacts during transfer (1st row) and promotes

uniform sampling of patches (3rd row). The size of the trans-

ferred regions (2nd row) decreases when increasing δ.

Related works Our approach is different from other diver-

sification methods like the normalization of scores of [15, 16]

because we are directly using the occurrence count of the style

patches in our comparison. Observe that, contrary to [14, 8]

which require a large number of iterations to converge to the

optimal solution, only a few (5 to 8) are enough in our setting

to get a sufficient approximation for our purpose.

The proposed approach is however somehow similar to [13]

in which an occurrence map is iteratively updated to penalize

patch distances. Unfortunately, this strategy is not suitable

for parallel computing, and we experimentally found it to be

unstable. In our setting, the penalization occurs once the par-

allelized propagation and random search are done.

3. EXPERIMENTS AND DISCUSSION

Parameters As presented before, our method contains sev-

eral parameters to alter the style transfer process. For the re-

sults showed in this paper, we set the scale ratio to r = 1.3
and the number of scales to N = 14 in the model. The patch

(a) Content image

(b) Style images (c) Results using RGB+Gradients channels (d) Results using VGG-16 features (relu 1 1)

Fig. 4: Sample results of style transfer on 512 × 512 images (style and content). Our method manages to preserve the global aesthetic of

the style by copying large regions of patches. The image were generated using the default parameters specified in Sec. 3. We are using a

pre-trained VGG-16 model, as well as the pre-processing required by it, but our model does not need any explicit training by itself.

(a) Content image (b) Style image

(c) [19] (d) [22]

(e) [23] (f) Ours (relu 1 1)

Fig. 5: Comparisons with other methods. Thanks to the use of

patches for our style transfer, our outputs are able to consistently

match with the aesthetic properties of the style image.

size is fixed to σ = 5. Deeper scales or higher patch size

generally imply larger copied regions of patches.

The user can also control the injection of content details with

parameters ρk in Eq. (3). The parameter ρk decreases linearly

between ρN−1 = 1.0 (coarsest) to ρ0 = 0.5 (finest scale), to

ensure that the salient part of the content image is still notice-

able in most of the cases. Finally, δ = 10−12 in our setup.

Patch-Features The results of the style transfer can be al-

tered by using different features Φ than RGB. Other color

spaces such as a weighted Lab color space can give finer

tuning over the selection of patches. A color transfer can

also largely improve the synthesized result in some cases and

is a strategy used in the previous patch-based style transfer

method [5, 6, 8]. Our method (Figs. 3,4c) uses by default the

RGB channels along with the gradients of the image that we

concatenate as supplementary channels (then, c = 5).

Motivated by the approach of neural style transfer of [19],

we use the first convolution layer of VGG-16 [20] (hence

c = 64). The feature space shows significant differences with

the RGB channel in the synthesized image. The most notable

one is a better understanding of flat colors from the neural

layer (Fig. 4d). However, using a different space requires

some tuning, especially in the learning step of the occurrence

penalization, as its value become much more sensible. Gen-

erally speaking, the use of a too large feature space in di-

mensions unfortunately clashes with the process of growing

regions of patches.

Comparison Our algorithm is able to synthesize convinc-

ing style transfer outputs (Fig. 4, 5) with a reasonable com-

putation time compared to the neural approach whose training

is time-consuming, especially if a database is needed.

Implementation Our method use a custom PatchMatch al-

gorithm that internally includes our occurrence penalization

(Sec. 2.2). The computation time on 512×512 RGB images

is 20∼30 seconds. However, the parallelized patch extraction

process of our algorithm is naturally expensive in memory

due to the fact that it extracts the patches all at once, but a

sequential implementation of PatchMatch would handle this.

Acknowledgment This work is partially supported by the

project ANR-19-CHIA-0017.

4. REFERENCES

[1] Alexei A Efros and Thomas K Leung, “Texture syn-

thesis by non-parametric sampling,” in Proceedings of

the seventh IEEE international conference on computer

vision. IEEE, 1999, vol. 2, pp. 1033–1038.

[2] Michael Ashikhmin, “Synthesizing natural textures,” in

Proceedings of the 2001 symposium on Interactive 3D

graphics, 2001, pp. 217–226.

[3] Alexei A Efros and William T Freeman, “Image quilting

for texture synthesis and transfer,” in Proceedings of

the 28th annual conference on Computer graphics and

interactive techniques, 2001, pp. 341–346.

[4] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver,

Brian Curless, and David H Salesin, “Image analo-

gies,” in Proceedings of the 28th annual conference

on Computer graphics and interactive techniques, 2001,

pp. 327–340.

[5] Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hel-

lier, “Split and match: Example-based adaptive patch

sampling for unsupervised style transfer,” in Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016.

[6] Michael Elad and Peyman Milanfar, “Style transfer via

texture synthesis,” IEEE Transactions on Image Pro-

cessing, vol. 26, no. 5, pp. 2338–2351, 2017.

[7] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun

Kwatra, “Texture optimization for example-based syn-

thesis,” in ACM SIGGRAPH 2005 Papers, pp. 795–802.

2005.

[8] Arthur Leclaire and Julien Rabin, “A Stochastic Multi-

layer Algorithm for Semi-Discrete Optimal Transport

with Applications to Texture Synthesis and Style Trans-

fer,” Journal of Mathematical Imaging and Vision, July

2020.

[9] Benjamin Samuth, Project Web page, 2022, https://

samuth211.users.greyc.fr/2022/StyleTransfer/ .

[10] Yonatan Wexler, Eli Shechtman, and Michal Irani,

“Space-time completion of video,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 29,

no. 3, pp. 463–476, 2007.

[11] Alasdair Newson, Andrés Almansa, Matthieu Fradet,

Yann Gousseau, and Patrick Pérez, “Video inpainting

of complex scenes,” Siam journal on imaging sciences,

vol. 7, no. 4, pp. 1993–2019, 2014.

[12] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver

Deussen, Dani Lischinski, and Tien-Tsin Wong, “Solid

texture synthesis from 2d exemplars,” in ACM SIG-

GRAPH 2007 Papers, 2007.

[13] Alexandre Kaspar, Boris Neubert, Dani Lischinski,

Mark Pauly, and Johannes Kopf, “Self tuning texture

optimization,” Computer Graphics Forum, vol. 34, no.

2, pp. 349–359, 2015.

[14] Jorge Gutierrez, Julien Rabin, Bruno Galerne, and

Thomas Hurtut, “Optimal patch assignment for statis-

tically constrained texture synthesis,” in International

Conference on Scale Space and Variational Methods in

Computer Vision. Springer, 2017, pp. 172–183.

[15] Niv Granot, Ben Feinstein, Assaf Shocher, Shai Bagon,

and Michal Irani, “Drop the gan: In defense of patches

nearest neighbors as single image generative models,”

arXiv preprint arXiv:2103.15545, 2021.

[16] Niv Haim, Ben Feinstein, Niv Granot, Assaf Shocher,

Shai Bagon, Tali Dekel, and Michal Irani, “Diverse

generation from a single video made possible,” arXiv

preprint arXiv:2109.08591, 2021.

[17] Connelly Barnes, Eli Shechtman, Adam Finkelstein,

and Dan B Goldman, “Patchmatch: A randomized

correspondence algorithm for structural image editing,”

ACM Trans. Graph., vol. 28, no. 3, pp. 24, 2009.

[18] Ryan Webster, “Innovative non-parametric texture

synthesis via patch permutations,” arXiv preprint

arXiv:1801.04619, 2018.

[19] Leon A. Gatys, Alexander S. Ecker, and Matthias

Bethge, “Image style transfer using convolutional neu-

ral networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[20] Karen Simonyan and Andrew Zisserman, “Very deep

convolutional networks for large-scale image recogni-

tion,” arXiv preprint arXiv:1409.1556, 2014.

[21] Xun Huang and Serge Belongie, “Arbitrary style trans-

fer in real-time with adaptive instance normalization,”

in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 1501–1510.

[22] Hang Zhang and Kristin Dana, “Multi-style genera-

tive network for real-time transfer,” in Proceedings of

the European Conference on Computer Vision (ECCV)

Workshops, 2018, pp. 0–0.

[23] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meil-

ing Wang, Xin Li, Zhengxing Sun, Qian Li, and Er-

rui Ding, “Adaattn: Revisit attention mechanism in

arbitrary neural style transfer,” in Proceedings of the

IEEE/CVF international conference on computer vision,

2021, pp. 6649–6658.

https://samuth211.users.greyc.fr/2022/StyleTransfer/
https://samuth211.users.greyc.fr/2022/StyleTransfer/

	 Introduction
	 Method
	 Algorithm overview
	 Occurrence penalization

	 Experiments and discussion
	 References

